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Abstract 

The main result of this paper is the computation of the mean optimal symmetrical 

interpolation points in the tetrahedron up to degree 9. This interpoation set has the 

smallest Lebesgue constant known today. 
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High quality polynomial interpolation of functions is essential in many applications [1] [7], 

in particular, in the p-version of the Finite Element Method. However, very little is known 

about the approximation accuracy of interpolation in the simplex in several dimensions. Of 

particular concern are the two dimensional and three dimensional cases. We refer here to 

the few literatures that discuss this problem [2] [3] [4] [6]. 

In this paper, we compute the mean optimal interpolation sets in the tetrahedron. The 

main result in [3] is that in the interval and in the triangle, the mean optimal sets are close 

to the optimal interpolation sets in the mean norm(the smallest Lebesgue constant sets). We 

give the mean optimal sets in table 3 in this paper. In the literature, the most widely used 

interpolation sets in the tetrahedron is the equally spaced point sets. The approximation 

quality for equally spaced point sets is known to deteriorate considerably for high degree 

interpolation. Bos [2] has proposed a set for arbitrary dimension up to degree 4. Aside from 

these, We are unaware of any other high degree interpolation sets in the tetrahedron. 

Interpolation in a simplex of dimensions more than three is still of interest even though it 

is not considered in this paper. The general principle introduced in [3] can still be employed, 

albeit in a more complicated fashion. 

We use the same notation as is used in [3]. Let S3 be the three dimensional simplex 

in R3. Let Pn(S
3) be the space of polynomials of degree n in three variables. Then dim 

Pn(S
3) = Nn := ( H 3 3 ) = ("+1)("+2)("+3). Let T" = (xu ■ ■ ■ ,xNn), Xj G S3 be a set of 

distinct points in 5*3, where n is the degree of interpolation. Tn will be called the nodal set and 

Xi the nodal points. Furthermore let Tn be the family of all nodal sets, or the set of admissible 

nodes (see next section for discussion of admissible nodes) i.e., Tn G Tn. The interpolation 

problem now reads: Given a continuous function in S3, f G C(S3) and the nodal set Tn, find 

pn G Pn such that pn(xi) = f{xr), x{ G Tn(S3), i = 1, ■ • ■, Nn. Let rrij(x)J = 1, • • •, Ar
n be 

the basis functions of Pn(S
3), then pn(xj) = J2j=\ Qjm,j(xi) = /(x,-), 1 < i < Nn. This system 



of linear equations is uniquely solvable for all right hand sides if and only if the determinant 

is nonzero. The determinant of the system is denoted by VDM(Tn). Assuming now that 

VDM(Tn) ^ 0, we can construct the Lagrange coefficients Lj(x) € Pn{S
3),j = l,..Nn as 

basis of Pn(S
3) with Lj(xi) = Sij, 1 < i,j < Nn. For / e C(S3), we have 

Pn(x) = ^f(xk)LT
k(x). (1) 

fc=i 

Denote pn(t) = CTf, then CT is a linear projection operator which maps C(S3) onto P„(53). 

If no misunderstanding will occur, we sometimes omit the index n. 

We equip Pn(S
3) with a norm || ■ || and denote 

||£r|| =SUP 17771—> W 
f^o   llJlloo 

if || . || = || • H^, we write \\£T\\OC = A(T). It is easy to show that: 

A(T) = maxf>r(x)|. (3) 
xe5 jb=i 

A(T) is called the Lebesgue constant of CT. In addition, we define 

\\(£T)\\\:= I X\Ll{x)\*dx, 
Js k=\ 

(4) 

Now we are interested in the sets T\ which minimizes ||£T||OO and T2 which minimizes 

||(£T}||2. Ti is the optimal interpolation set. T2 is called the mean L2 (or briefly mean) 

optimal set. We are also interested in the set TVDM which maximizes \VDM\ and call it the 

VDM set. The VDM set is sometimes used to approximate the optimal set, see [2]. 

Remark: Let / G C(S3), then ||/ - £T/|U < (1 + A(T))inf5ePn(S3) ||/ - tflU, see [3]. 

Hence, the interpolation error is of the same order as the best approximation up to the 

Lebesgue constant. Interpolation points with the smallest Lebesgue constant therefore leads 

to the smallest interpolation error. 



Figure 1: The standard tetrahedron. 

From now on, S3 is the standard tetrahedron shown in Fig. 1. We denote (x,y,z) the 

Cartesian coordinates. 

We shall be interested in the degree n optimal interpolation set for the mean norm(or 

the VDM determinant) in a restricted set T of the nodal points: 

a. The set of nodal points is symmetrical with respect to all symmetries of the tetrahedron; 

b. On each face of the tetrahedron, we use degree n optimal interpolation set for the mean 

norm(or the VDM determinant) in the triangle. 

Condition b. is based on the following consideration. When we approximate a function 

in a domain partitioned into tetrahedrons, we require the resulting piecewise polynomial to 

be continuous. We also want to have minimal error on each face. Condition b. is not a 

serious impediment. Indeed in the triangle case, we computed the degree n optimal set T^Tri 

for the mean norm under the constraint that the nodal points on the edges of the triangle 

is the one dimensional degree n mean optimal set. The corresponding Lebesgue constant is 

quite close to that of the actual mean norm optimal set T2
n
Tri. This is shown in Table 1. 

Because finding optimal points T\ is much more difficult, we minimize ||{£T)||2 and find 



Table 1: Lebesgue constant and the mean norm for the triangle optimal mean set T%Tri, and 
the constrained mean set T2

n
Tri. Note the square of the mean norm is normalized by the 

trangle area. 

n KTfrri) KTpTri) TslK^,) 2      ^MCf?TJ   2 
2 
3 

1* 
2.1114 2.1206 

19 
30 

0.7404 

10 
30 

0.7420 
4 2.6920 2.6833 0.8196 0.8220 
5 3.3010 3.2695 0.8837 0.8863 
6 3.7910 3.7736 0.9408 0.9434 
7 4.3908 4.3949 0.9964 0.9990 
8 5.0893 5.1106 1.0553 1.0578 
9 5.9181 5.9456 1.1227 1.1252 

10 7.0850 7.1140 1.2050 1.2076 
11 8.3383 8.3864 1.3110 1.3140 
12 8.6928 8.7384 1.4533 1.4572 
13 12.0464 12.1120 1.6508 1.6561 

the optimal set T<i in the constrained family. More precisely we find a set which is an 

approximation of a local minimum of ||(£r)||2. We also compute the maximum of |V.DM| 

subject to the same constraints. We point out that the tetrahedron VDM set TyDM restricted 

to a face of the tetrahedron is exactly the two dimensional triangle VDM set computed in 

[3]. Therefore, constraint b. is automatically satisfied by the VDM set. This can be seen 

by using the hierarchic shape functions in [7] as the basis functions rrij(x). Hierarchic shape 

functions for the tetrahedron are organized into four categories: the nodal shape functions, 

the edge modes, the face modes and the interior modes. |V.DM| in the hierarchic shape 

function basis is the product of |V£)M| for the edge modes, |V.DM| for the face modes 

and |VZ)M| for the interior modes. Therefore, maximizing |y.DM| for the tetrahedron is 

equivalent to maximizing l^-DM) for each edge, each face and the interior. 

By symmetry, a nodal point inside the tetrahedron can be at the center of the tetra- 

hedron, or on one of the four lines passing through a vertex and the center of the triangle 

face opposite to that vertex, or on one of the three lines connecting the midpoints of two 



nonintersecting edges, or on one of the six symmetry planes but on none of the aforemen- 

tioned lines, or on none of the symmetry planes (this node is located inside one of the twenty 

four subtetrahedrons bounded by the six symmetry planes). It corresponds to a point in a 

singlet, or a quartet, or a sextet, or a twelve fold symmetrical point, or a twenty four fold 

symmetrical point. We denote the number of these multiplets by n\(ni = 0 or 1), n4, UQ, 

"12, "24- Since the total number of these multiplets equals the number of interpolating nodes 

inside the tetrahedron, ni + An^ + QTIQ + 12ri\2 + 2An24 = ln~ )in~ )\n~ J_ 

The integer solution for the above equation is nonunique when n > 6. Different integer 

solutions correspond to different symmetry patterns of the nodal set. Each symmetry pattern 

has a minimum mean norm, we want to find the smallest mean norm (the global minimum) 

among these minima. 

For the n-th degree equally spaced point set, the symmetry pattern will be denoted as 

(ne
1
q, neq, ng9, n12\ "24)- It obviously satisfy the integer equation ni+4n4+6ne+12ni2+24n24 = 

(n~ ivüz. A"~ )_ Numerical evidence shows that the minimum for this symmetry is smaller 

than the minima in other symmetry pattern cases. Therefore, we restrict ourselves to one 

more constraint: 

c. The integer pair (ni, 774, UQ, 7112, ^24) for the symmetrical pattern of the degree n optimal 

set is (nf9, nq, n^9, neq
2, "24), the solution for the symmetrical pattern of the degree n equally 

spaced point set. 

In Table 3, we list the approximate optimal sets in the tetrahedron barycentric coordi- 

nates: ^ = \{l - x --fc - ^), b2 = 1(1 + x - ^ + ^), 63 = 73(2/ - f6), b4 = ^z. 

bi + b2 + &3 + 64 = 1. We also list {neq, nq, n^9, nq2, "24) ancI the number of interpolation 

points Nn. Points with multi-fold symmetry are listed only once. Other points with the 

same symmetry can be obtained by applying tetrahedron symmetries to the listed points, 

i.e., by permuting barycentric coordinates b\,b2,b^,b4. 
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Table 2: Lebesgue constant and the mean norm for the optimal mean set, the VDM set 
and the equally spaced point set. Note the square of the mean norm is normalized by the 
tetrahedron volume. 

n A(T2") •M-M/DM) KT:,) TslK^) 2 78^
CT

VDM) 2 TglK^,) 2 
2 

3 

2 

2.9339 

2 

2.9329 

2 

3.0200 

L8 
35 

0.6435 

18 
35 

0.6437 

18 
35 

0.6893 
4 4.1120 4.1534 4.8801 0.7669 0.7670 0.9329 
5 5.6158 5.9961 8.0937 0.8892 0.8941 1.2915 
6 7.3632 8.8898 13.6568 1.0237 1.0423 1.8721 
7 9.3659 11.6425 23.3789 1.1895 1.2417 2.9157 
8 12.3111 15.8340 40.5455 1.4165 1.5513 4.9854 
9 15.6857 22.3304 71.1521 1.7532 2.0984 9.4538 

Neither Tg nor TyDM leads to the minimization of the Lebesgue constant. Nevertheless 

based on the one dimensional and the triangle results, we expect that the Lebesgue constant 

of T£ will not be significantly larger than the Lebesgue constant of T™, and will be smaller 

than the Lebesgue constant olTyDM. In Table 2, we give the Lebesgue constants for the sets 

T% and TyDM. For comparison, we also list the Lebesgue constant for the equally spaced 

point set Te
n, = {(&i = £,62 = £, 63 = £,&4 = £),0 < i,j,k,l;i + j + k + l = n}. Indeed, 

T2
n has a smaller Lebesgue constant than TyDM and a much smaller Lebesgue constant than 

that of T"q. The last three columns give the mean norms. 

We have given in this paper the mean optimal set T2™ in the tetrahedron. T2
n has the 

smallest Lebesgue constant known today. The other two interpolation sets are the equally 

spaced point set Te"g and the VDM set T$DM. 



Table 3: Barycentric coordinates for the tetrahedron optimal mean set T2. 

n     Nn    ni    ri\    HQ    n\2    n2\ lh b2 h h 
2  10  0  0  0  0  0 1.0000000 0.0000000 0.0000000 0.0000000 

0.5000000 0.5000000 0.0000000 0.0000000 
3  20  0  0  0  0  0 1.0000000 0.0000000 0.0000000 0.0000000 

0.7251957 0.2748043 0.0000000 0.0000000 
0.3333333 0.3333333 0.3333333 0.0000000 

4  35  1  0  0  0  0 1.0000000 0.0000000 0.0000000 0.0000000 
0.8306024 0.1693976 0.0000000 0.0000000 
0.5000000 0.5000000 0.0000000 0.0000000 
0.2208880 0.2208880 0.5582239 0.0000000 

1 0.2500000 0.2500000 0.2500000 0.2500000 
5  56  0  1  0  0  0 1.0000000 0.0000000 0.0000000 0.0000000 

0.8866427 0.1133573 0.0000000 0.0000000 
0.6431761 0.3568239 0.0000000 0.0000000 
0.1525171 0.1525171 0.6949657 0.0000000 
0.4168658 0.4168658 0.1662683 0.0000000 

1 0.1823054 0.1823054 0.1823054 0.4530838 
6  84  0  1  1   0   0 1.0000000 0.0000000 0.0000000 0.0000000 

0.9194021 0.0805979 0.0000000 0.0000000 
0.7349105 0.2650895 0.0000000 0.0000000 
0.5000000 0.5000000 0.0000000 0.0000000 
0.3333333 0.3333333 0.3333333 0.0000000 
0.1097139 0.1097139 0.7805723 0.0000000 
0.3157892 0.5586077 0.1256031 0.0000000 

1 0.1357838 0.1357838 0.1357838 0.5926485 
1 0.3559336 0.3559336 0.1440664 0.1440664 

7 120  0  2  0  1  0 1.0000000 0.0000000 0.0000000 0.0000000 
0.9398927 0.0601073 0.0000000 0.0000000 
0.7957614 0.2042386 0.0000000 0.0000000 
0.6042138 0.3957862 0.0000000 0.0000000 
0.0817370 0.0817370 0.8365261 0.0000000 
0.4494208 0.4494208 0.1011584 0.0000000 
0.2663399 0.2663399 0.4673202 0.0000000 
0.2447528 0.6584392 0.0968080 0.0000000 

2 0.1046666 0.1046666 0.1046666 0.6860001 
0.2936310 0.2936310 0.2936310 0.1191069 

1 0.1141973 0.1141973 0.4885725 0.2830329 



n     Nn    n\    n4    n6 nn    n2A h l>2 h W 
8 165  1  1  1   2   0 1.0000000 0.0000000 0.0000000 0.0000000 

0.9533797 0.0466203 0.0000000 0.0000000 

0.8375919 0.1624081 0.0000000 0.0000000 

0.6801403 0.3198597 0.0000000 0.0000000 

0.5000000 0.5000000 0.0000000 0.0000000 

0.0627331 0.0627331 0.8745338 0.0000000 

0.2153606 0.2153606 0.5692789 0.0000000 

0.3891297 0.3891297 0.2217406 0.0000000 

0.3657423 0.5524728 0.0817849 0.0000000 

0.1942206 0.7294168 0.0763626 0.0000000 

1 0.2500000 0.2500000 0.2500000 0.2500000 
1 0.0834511 0.0834511 0.0834511 0.7496468 

1 0.4060462 0.4060462 0.0939538 0.0939538 
2 0.0927818 0.0927818 0.5844475 0.2299889 

0.2432058 0.2432058 0.4157364 0.0978521 

9 220  0  2  0   4   0 1.0000000 0.0000000 0.0000000 0.0000000 

0.9626819 0.0373181 0.0000000 0.0000000 

0.8672666 0.1327334 0.0000000 0.0000000 

0.7361751 0.2638249 0.0000000 0.0000000 

0.5815151 0.4184849 0.0000000 0.0000000 
0.3333333 0.3333333 0.3333333 0.0000000 
0.0493729 0.0493729 0.9012542 0.0000000 
0.4658361 0.4658361 0.0683277 0.0000000 
0.1769439 0.1769439 0.6461122 0.0000000 
0.3020146 0.6309227 0.0670627 0.0000000 
0.1575680 0.7808733 0.0615587 0.0000000 
0.3261032 0.4887991 0.1850977 0.0000000 

2 0.0682526 0.0682526 0.0682526 0.7952422 
0.2123036 0.2123036 0.2123036 0.3630891 

4 0.0774288 0.0774288 0.6543249 0.1908175 
0.0781245 0.0781245 0.5016150 0.3421360 
0.2049128 0.2049128 0.5083123 0.0818620 
0.3552639 0.3552639 0.2073089 0.0821632 
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